Projet Akasaba Ouest Qualité de l'air Ateliers thématiques Mars-avril 2015

Pascal Rhéaume, ing., M.Sc.A., directeur de projets

- Directeur de la modélisation de la dispersion atmosphérique chez WSP
- Projets miniers modélisés:
 - Projet Dumont
 - Canadian Malartic
 - Lac Bloom
 - Black Rock
 - Arianne Phosphate
 - Mont Wright

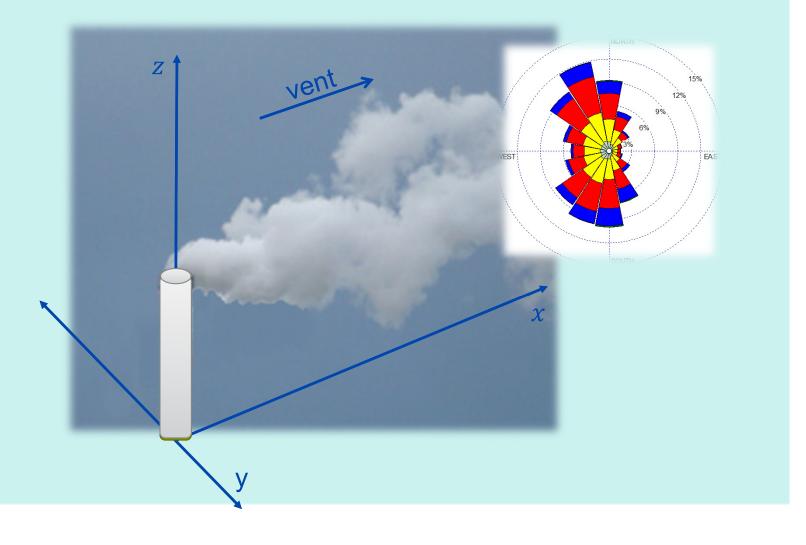
- Mine Arnaud
- Joyce Lake
- Métanor
- La Ronde
- Niobec
- Mine Tio

Ordre de la présentation

- Modélisation de la dispersion atmosphérique
- 2. Conditions actuelles de la qualité de l'air
- 3. Sources d'impact considérées
- 4. Réglementation sur la qualité de l'air
- 5. Effets attendus sur la qualité de l'air et mesures d'atténuation
- 6. Réponses à quelques questions posées lors des consultations à l'automne 2014
- 7. Période d'échanges

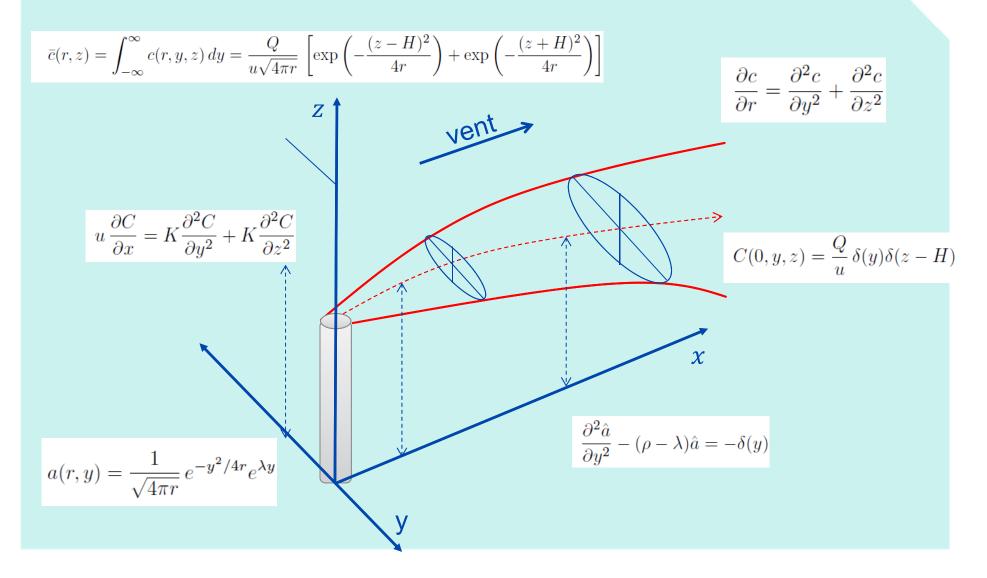
MODÉLISATION DE LA DISPERSION ATMOSPHÉRIQUE

Modélisation de la dispersion atmosphérique


Définition d'un modèle

- Un modèle mathématique est un système d'équations complexes qui permet, avec une approximation suffisante, de décrire un phénomène.
- Les modèles mathématiques de dispersion atmosphérique servent à prédire la concentration dans l'air, à une distance donnée d'une source d'émission.

Un modèle est une image simplifiée de la réalité



Modélisation de la dispersion atmosphérique (suite)

Modélisation de la dispersion atmosphérique (suite)

CONDITIONS ACTUELLES DE LA QUALITÉ DE L'AIR

Conditions actuelles de la qualité de l'air

CONCENTRATIONS INITIALES

Les concentrations initiales correspondent au « background », i.e. la quantité de contaminants atmosphériques présente dans une zone d'étude, et ce, avant l'établissement d'un projet.

Ces concentrations ont été déterminées à partir :

- de mesures effectuées par les stations du Réseau de surveillance de la qualité de l'air du MDDELCC;
- des concentrations initiales mentionnées dans l'annexe K du Règlement sur l'assainissement de l'air (RAA) (Q 2, r.4.1).

SOURCES D'IMPACT CONSIDÉRÉES

Sources d'émission

Sources d'impact considérées

SOURCES D'ÉMISSION

Chargement

Déchargement

Routage et gaz d'échappement

Érosion des piles/haldes

Forage

Sautage

*Photos à titre d'exemple seulement.

Sources d'impact considérées (suite)

Scénario modélisé - 3º année d'exploitation

Phase d'exploitation – année 3	Tonnage (Mt)
Stérile NPGA (Fosse - Pile NPGA stérile)	0.66
Stérile PGA (Fosse - Pile PGA Stérile)	0.74
Minerai (Fosse - Concasseur)	1.02
Minerai (Fosse-Pile Minerai)	1.23
Total	3.65

Faibles tonnages vs autres projets:

- Projet Dumont (moyenne de 100 Mt par année max 145 Mt);
- Mine Arnaud (moyenne de 23 Mt par année max 27 Mt);
- Arianne Phosphate (moyenne de 35 Mt par année max 90 Mt).

Sources d'impact considérées (suite)

SOURCES D'ÉMISSIONS

Routage

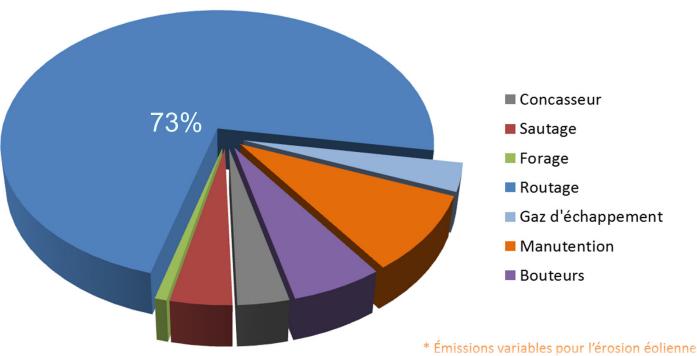
- → 6 x camions miniers (40 tonnes)
- → 6 x camions routiers

Sautage

- → Émulsion à 100%
- → 2 tirs par sautage

Forage

- → Forage à l'eau
- → Dépoussiéreurs


Manutention

- **→** Chargements
- → Déchargements

Traitement du minerai

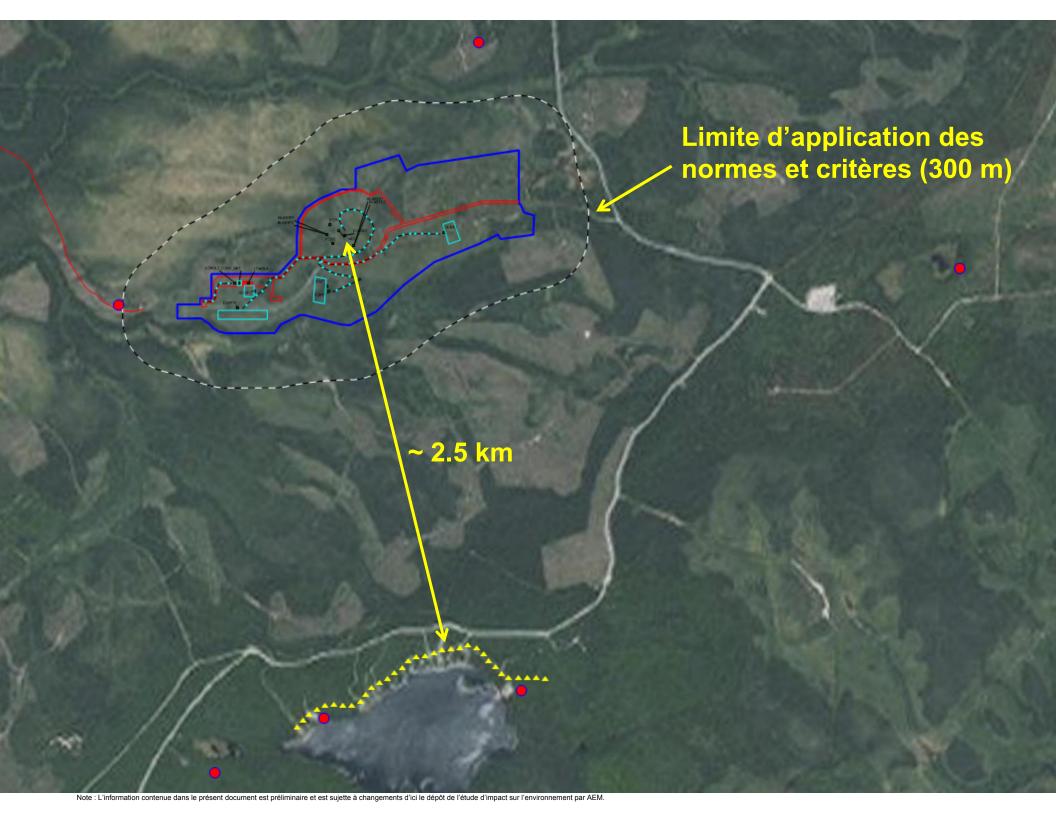
→ Concasseur

RÉGLEMENTATION SUR LA QUALITÉ DE L'AIR

Réglementation sur la qualité de l'air

PRINCIPES DE LA DÉLIMITATION

- Les normes et critères de qualité de l'atmosphère s'appliquent à la limite de propriété lorsqu'une telle limite existe.
- Dans le cas de projets miniers se trouvant sur des terres publiques, le ministère de l'Environnement (MDDELCC) demande que les normes soient respectées à partir d'une distance de 300 m des différentes installations de la mine.
- Dans le cas d'Akasaba Ouest, le projet est situé entièrement en terre publique, donc la limite d'application est à 300 m des installations.


Réglementation sur la qualité de l'air (suite)

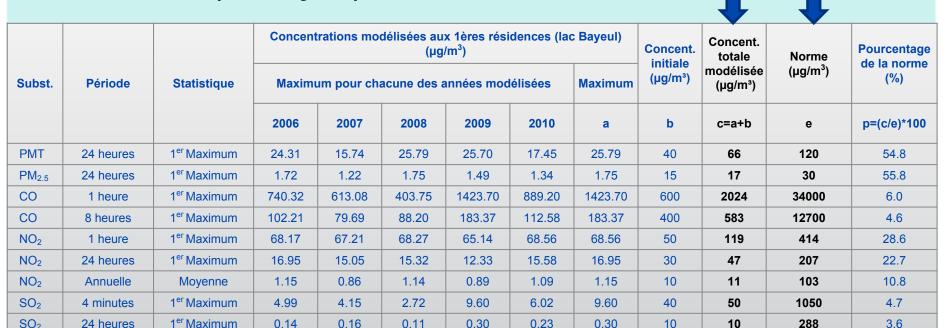
DOMAINE ET RÉCEPTEURS

- Domaine 10 km x 10 km
- Grille de récepteurs au 100 m et 200 m
- Limite d'application des normes et critères à 300 m des installations minières
- 1^{ers} récepteurs spécifique : abris sommaires (camps de chasse)
- 1^{res} résidences : au lac Bayeul (à environ 2.5 km des installations minières)

SUR LA QUALITÉ DE L'AIR ET MESURES D'ATTÉNUATION

Impacts sur la qualité de l'air – année 3

Résultats préliminaires de la modélisation 1^{ers} récepteurs spécifiques (abris sommaires)



Subst.	Période	Statistique	Concentrations modélisées aux récepteurs spécifiques (μg/m³)						Concent.	Concent. totale	Norme	Pourcentage de la norme
			Maximum pour chacune des années modélisées Maxin					Maximum	(µg/m³)	modélisée (µg/m³)	(µg/m³)	(%)
			2006	2007	2008	2009	2010	а	b	c=a+b	е	p=(c/e)*100
PMT	24 heures	1 ^{er} Maximum	44.28	36.01	47.20	55.15	47.14	55.15	40	95	120	79.3
PM _{2.5}	24 heures	1 ^{er} Maximum	2.99	2.53	3.85	3.35	2.76	3.85	15	19	30	62.8
СО	1 heure	1 ^{er} Maximum	1166.30	1490.00	1199.00	2091.80	1850.60	2091.80	600	2692	34000	7.9
СО	8 heures	1 ^{er} Maximum	146.33	187.00	156.92	261.83	231.33	261.83	400	662	12700	5.2
NO ₂	1 heure	1 ^{er} Maximum	124.54	122.00	116.75	118.55	116.23	124.54	50	175	414	42.2
NO ₂	24 heures	1 ^{er} Maximum	26.17	15.02	25.41	36.14	20.55	36.14	30	66	207	32.0
NO ₂	Annuelle	Moyenne	1.94	1.52	1.78	1.72	1.37	1.94	10	12	103	11.6
SO ₂	4 minutes	1 ^{er} Maximum	7.91	10.09	8.09	14.10	12.48	14.10	40	54	1050	5.2
SO ₂	24 heures	1 ^{er} Maximum	0.27	0.27	0.28	0.47	0.35	0.47	10	10	288	3.6
SO ₂	Annuelle	Moyenne	0.00	0.01	0.01	0.01	0.01	0.01	2	2	52	3.9

- Aucune substance ne dépasse les normes.
- Pour les particules totales (PMT), la concentration correspond à 79,3% de la norme et représente la valeur modélisée la plus élevée.

Résultats préliminaires de la modélisation 1^{res} résidences (lac Bayeul)

0.00

0.30

0.00

2

0.00

10

2

52

Aucune substance ne dépasse les normes.

0.00

0.16

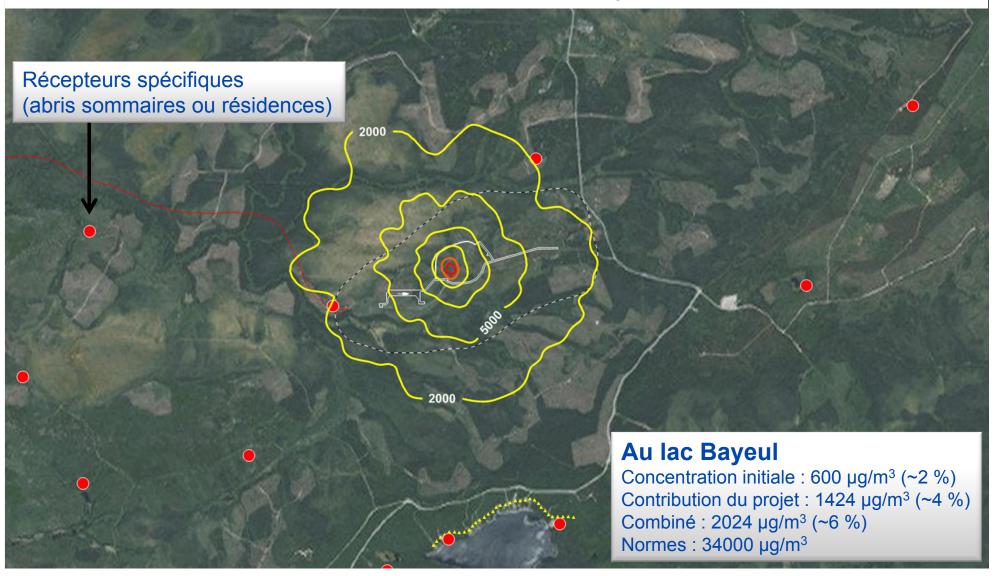
0.00

24 heures

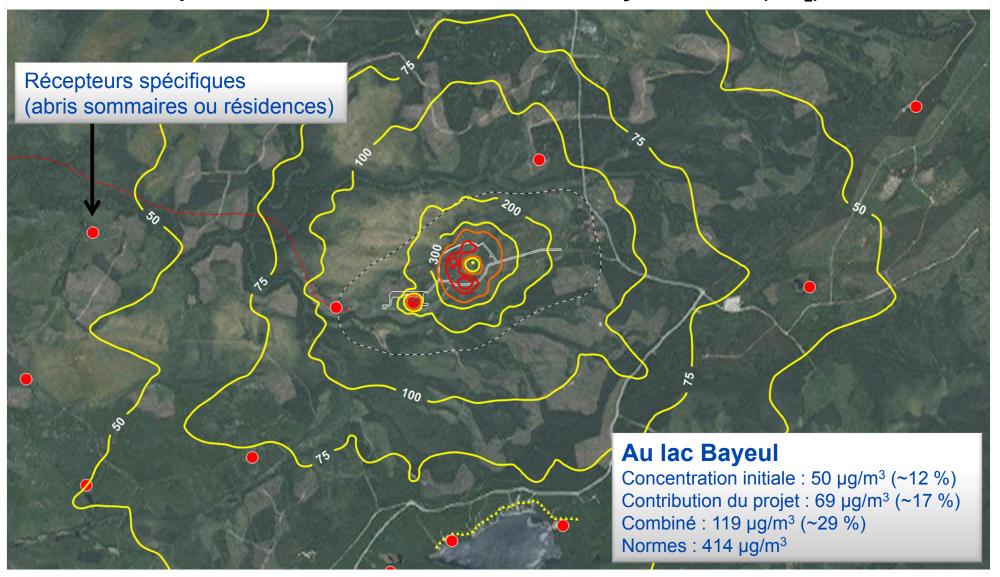
Annuelle

Moyenne

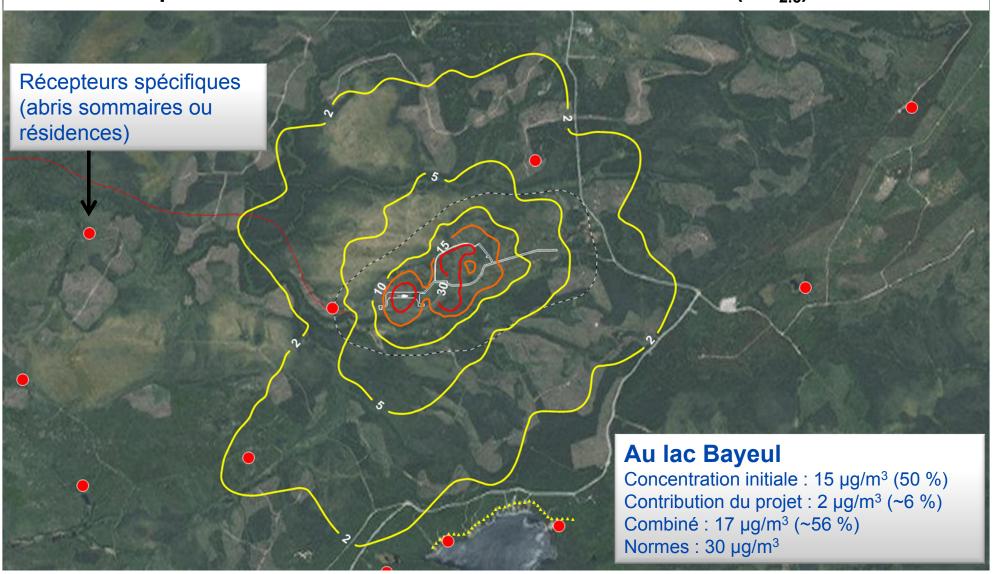
SO₂

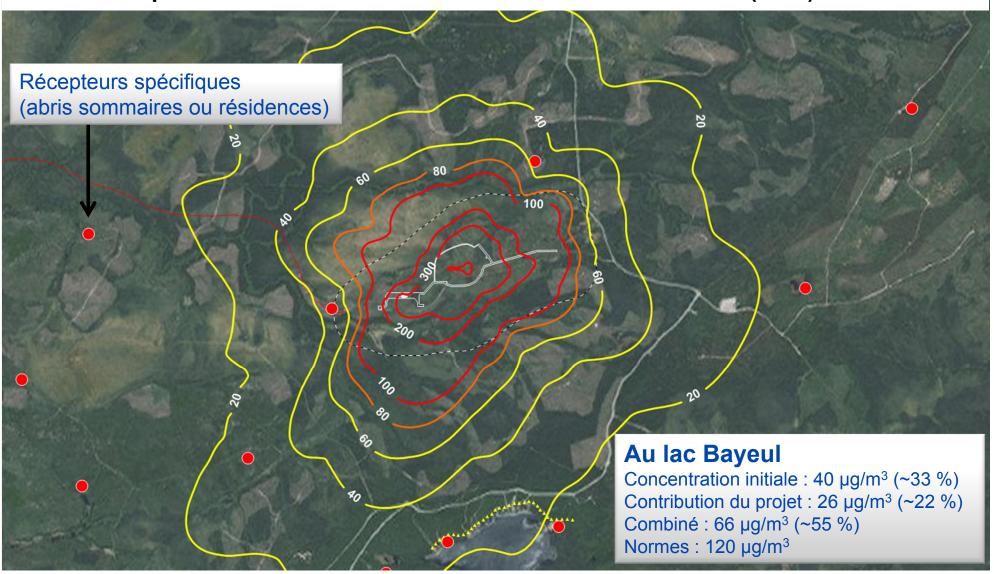

Pour les particules fines (PM_{2.5}), la concentration correspond à 55,8% de la norme et représente la valeur modélisée la plus élevée.

0.00



3.9


Résultats préliminaires de la modélisation – Monoxyde de carbone (CO) – 1 heure

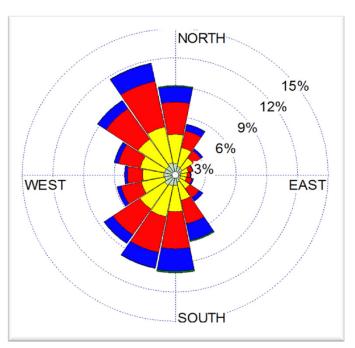

Résultats préliminaires de la modélisation – Dioxyde d'azote (NO₂) – 1 heure

Résultats préliminaires de la modélisation – Particules fines $(PM_{2.5})$ – 24 heures

Résultats préliminaires de la modélisation – Particules totales (PMT) – 24 heures

Mesures d'atténuation

- Arrosage régulier des routes et/ou traitements chimiques (produits conformes à la norme NQ 2410-300).
- Favoriser l'utilisation de pierre non-argileuse pour la construction des routes.
- Entretien rigoureux des surfaces de roulement.
- Limite de vitesse des véhicules miniers à 40 km/h sur le site de la mine.
- Système de dépoussiérage sur les foreuses.
- Système de dépoussiérage au concasseur.


RÉPONSES À
QUELQUES
QUESTIONS POSÉES
LORS DES
CONSULTATIONS À
L'AUTOMNE 2014

Réponses à quelques questions posées lors des consultations à l'automne 2014

- → À quelle fréquence seront les sautages? À quel moment de la journée auront lieu les sautages?
- Maximum de 2 sautages par jour à heures fixes (11h et / ou 15h).

- Dans quelle direction sont les vents dominants dans le secteur du projet?
- Les vents dominants dans le secteur sont du nord-ouest (environ 30 % du temps).

Réponses à quelques questions posées lors des consultations à l'automne 2014

→ Est-ce que le vent pourrait avoir un impact sur l'émission de poussière par la mine?

→ Est-ce que vous pourriez aller jusqu'à dire que certains sautages ne seront pas réalisés à cause des vents?

- L'influence du vent a été prise en compte dans les modélisations.
- Certains taux d'émissions dépendent directement du vent (déchargement, érosion des haldes).
- Selon la modélisation (résultats préliminaires), les sautages sont de faibles contributeurs de PMT. Donc on ne s'attend pas à moduler les sautages en fonction des vents.

Réponses à quelques questions posées lors des consultations à l'automne 2014

- → Est-ce que les poussières générées par la mine pourraient contaminer les lacs du secteur?
- Le respect des normes de qualité de l'atmosphère établies par le MDDELCC permet d'assurer un environnement sécuritaire pour la santé humaine et pour l'environnement.
- Selon la modélisation (résultats préliminaires), la déposition mensuelle de poussière au-dessus du lac Bayeul serait de 0,15g/m², soit environ 2 % de la norme de 7,5g/m² de l'ancien règlement*.
- Un suivi de la qualité de l'air et de l'eau sera planifié au lac Bayeul.

^{*} Norme de déposition de <u>l'ancien Règlement</u> sur la qualité de l'atmosphère (RQA – Art. 6) caduque depuis l'entrée en vigueur du Règlement d'assainissement de l'atmosphère.

PÉRIODE D'ÉCHANGES

Questions, commentaires ou suggestions?

